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The influences of non-Oberbeck–Boussinesq (NOB) effects on flow instabilities
and bifurcation characteristics of Rayleigh–Bénard convection are examined. The
working fluid is air with reference Prandtl number Pr = 0.71 and contained in
two-dimensional rigid cavities of finite aspect ratios. The fluid flow is governed
by the low-Mach-number equations, accounting for the NOB effects due to large
temperature difference involving flow compressibility and variations of fluid viscosity
and thermal conductivity with temperature. The intensity of NOB effects is measured
by the dimensionless temperature differential ε. Linear stability analysis of the
thermal conduction state is performed. An ε2 scaling of the leading-order corrections
of critical Rayleigh number Racr and disturbance growth rate σ due to NOB effects
is identified, which is a consequence of an intrinsic symmetry of the system. The
influences of weak NOB effects on flow instabilities are further studied by perturbation
expansion of linear stability equations with regard to ε, and then the influence of
aspect ratio A is investigated in detail. NOB effects are found to enhance (weaken)
flow stability in large (narrow) cavities. Detailed contributions of compressibility,
viscosity and buoyancy actions on disturbance kinetic energy growth are identified
quantitatively by energy analysis. Besides, a weakly nonlinear theory is developed
based on centre-manifold reduction to investigate the NOB influences on bifurcation
characteristics near convection onset, and amplitude equations are constructed for
both codimension-one and -two cases. Rich bifurcation regimes are observed based
on amplitude equations and also confirmed by direct numerical simulation. Weakly
nonlinear analysis is useful for organizing and understanding these simulation results.
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1. Introduction
Rayleigh–Bénard (RB) convection is a paradigm in hydrodynamic stability and

pattern formation studies (Chandrasekhar 1961; Normand, Pomeau & Velarde 1977;
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Cross & Hohenberg 1993; Bodenschatz, Pesch & Ahlers 2000). It is commonly
investigated under the Oberbeck–Boussinesq (OB) approximation, assuming an
incompressible flow and constant fluid properties except for a linear relationship
between density and temperature in the buoyancy term (Oberbeck 1879; Boussinesq
1903).

However, non-Oberbeck–Boussinesq (NOB) effects must be taken into account
under some practical circumstances, such as the thermal insulation systems in nuclear
reactors, where the typical temperature difference is of the order of several hundred
kelvins. When convection occurs with such a large temperature difference, the
variations of fluid properties or flow compressibility are so significant that OB
approximation is no longer valid (Gray & Giorgini 1976; Paolucci 1982).

It is well known that NOB effects will break the reflection symmetry of an RB
system about the horizontal mid-plane and have strong influences on instabilities and
flow transitions, as shown in previous studies. A sizable literature is devoted to the
study of NOB influences on pattern-forming instabilities of spatially extended systems.
Busse (1967) theoretically investigated the NOB influences due to temperature
dependence of material properties on the dominant RB convection pattern near
convection onset. It was found that NOB convection appears in the form of a
hexagonal pattern at lower Rayleigh number, and transition to a roll pattern occurs at
higher Rayleigh number. Several experiments have been reported to further explore
these NOB influences (Ahlers 1980; Ciliberto, Pampaloni & Perez-Garcia 1988;
Ciliberto et al. 1990; Bodenschatz et al. 1991; Pampaloni et al. 1992). We refer to
Bodenschatz et al. (2000) for a review. Recently Ahlers et al. (2010) experimentally
and theoretically studied the strong NOB effects near convection onset using sulfur
hexafluoride near its gas–liquid critical point. The NOB effects were divided into
two disjunct parts, one preserving the reflection symmetry of the system about the
horizontal mid-plane and the other breaking that symmetry.

There have been several studies devoted to the NOB effects in two-dimensional
RB convection. By numerically solving the low-Mach-number equations, Paolucci &
Chenoweth (1987) investigated the instability of convection onset and heat transfer
of the RB system of perfect gas in a two-dimensional cavity of aspect ratio 20.
Corrections of critical Rayleigh number and Nusselt number were found to depend
to the second order on the departures from the OB approximation. Fröhlich, Laure
& Peyret (1992) studied the NOB convection of perfect gas in a two-dimensional
periodic system via linear and weakly nonlinear stability analysis and direct numerical
simulation (DNS) of the low-Mach-number equations. Qualitative change of the
bifurcation nature of convection onset was observed and the transition to convection
rolls was found to be subcritical with strong NOB effects.

The NOB effects in other convection problems have also been studied. Suslov &
Paolucci (1995) studied the linear stability of fully developed mixed convection in
a differentially heated vertical channel. New unstable modes due entirely to NOB
effects were found. Weakly nonlinear analysis of NOB convection in a tall vertical
enclosure was performed in Suslov & Paolucci (1997). Bifurcation characteristics
of shear- and buoyancy-driven instabilities and their interactions were investigated.
The NOB influences on weakly nonlinear instability of mixed convection in an
open system were also studied (Suslov & Paolucci 1999a,b), and bifurcations and
mean flow characteristics were investigated in detail. Recently the NOB influences
on large-scale dynamics and heat transport of high-Rayleigh-number convection have
also received considerable attention (Ahlers et al. 2006; Sugiyama et al. 2007; Ahlers,
Grossmann & Lohse 2009; Chillà & Schumacher 2012; Horn, Shishkina & Wagner
2013; Horn & Shishkina 2014; Xia et al. 2016).
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So far, the NOB influences on RB instabilities have been studied extensively
in spatially extended systems, while less attention has been paid to systems of
finite aspect ratios. In Robinson & Chan (2004) the secondary instability of RB
convection of perfect gas in a rigid box was studied numerically under OB and
NOB conditions. In this paper we investigate the NOB influences on instabilities
and bifurcation characteristics of two-dimensional RB convection in rigid cavities of
finite aspect ratios, which is of practical and theoretical interest. In many practical
applications thermal convection occurs subject to a large temperature difference and
within confined domains, e.g. heat exchangers in electronic devices. On the one
hand, due to the large temperature difference, the variations of fluid properties or
flow compressibility can be significant and NOB effects are relevant. On the other
hand, geometry confinement has a strong influence on flow evolution. In order to
describe these phenomena properly, both factors should be taken into account. In finite
systems, geometry confinement of various degrees can induce flow structures with
different characteristics, e.g. symmetries. It is of theoretical interest to study how these
different flows respond to the NOB effects. It is expected that the combination of
symmetry breaking due to NOB effects and selection of flow structures by geometry
confinement will have non-trivial influences on flow evolutions.

The low-Mach-number equations with acoustic waves filtered are used to model
this type of flow both theoretically and numerically (Paolucci 1982). There are
two major purposes for choosing this model. On the one hand, the relationships
between fluid properties and temperature are described by Sutherland’s law and
perfect gas law, which permits us to investigate the influences of variations in fluid
properties in an accurate way. On the other hand, flow compressibility due to a large
temperature difference is appropriately taken into account in the low-Mach-number
equations, which is favourable for gaining insights into the possible influence of
compressibility on instabilities of RB systems. Firstly, linear stability analysis of
the thermal conduction state is performed and the variations of critical quantities
of convection onset due to NOB effects are given. Secondly, through perturbation
expansion of the linear stability equations (LSE) and budget analysis of disturbance
kinetic energy, we investigate in particular the influence of aspect ratio on instabilities
under NOB conditions. Finally, based on centre-manifold reduction, amplitude
equations are constructed to study the NOB influences on the bifurcation process
near convection onset. Rich bifurcation regimes are identified by weakly nonlinear
analysis, and also confirmed by DNS, showing that current weakly nonlinear analysis
is fruitful for organizing and understanding the DNS results.

The remainder of this paper is organized as follows. Problem description is provided
in § 2. Linear stability analysis is performed in § 3 and weakly nonlinear analysis in
§ 4, where major results are presented. A summary and discussion are given in § 5.
Finally, some technical details are provided in two appendices.

2. Problem description

The schematic of the two-dimensional RB system is illustrated in figure 1. The flow
region is confined in a rigid cavity of height Ĥ and width L̂ (hatted quantities are
dimensional). The top and bottom plates are kept at constant temperatures, which are
T̂0 − 1T̂/2 and T̂0 + 1T̂/2, respectively, where 1T̂ is the temperature drop across
the fluid layer. The sidewalls are thermally insulated. In this paper air is used as
the working fluid and the low-Mach-number equations with acoustic waves filtered



www.manaraa.com

144 S. Liu, S.-N. Xia, R. Yan, Z.-H. Wan and D.-J. Sun

FIGURE 1. Schematic of two-dimensional RB system.

are employed to describe the fluid flow (Paolucci 1982). In dimensionless form the
governing equations read

∂ρ

∂t
+
∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+
∂ρuiuj

∂xj
+
∂π

∂xi
=

√
Pr
Ra
∂τij

∂xj
+

1
2ε
(ρ − 1)ni, (2.2)

ρcp

(
∂T
∂t
+ uj

∂T
∂xj

)
=

1
√

RaPr

∂

∂xj

(
k
∂T
∂xj

)
+ Γ

dp
dt
, (2.3)

p = ρT. (2.4)

Here ui = (u, w) denotes the velocity components along the horizontal and vertical
directions xi = (x, z); T is the temperature and ρ the fluid density; π denotes the
hydrodynamic pressure; p represents the thermodynamic pressure, which is spatially
constant; τij=µ(∂ui/∂xj+ ∂uj/∂xi)+λδij∂uk/∂xk is the viscosity stress tensor, where µ
is the dynamical viscosity, λ=−2µ/3 is the volume viscosity and δij is the Kronecker
delta; ni = (0, −1) indicates the direction of gravity; cp is the isobaric specific heat,
which is fixed at 1; and Γ = (γ − 1)/γ quantifies the resilience of the fluid, with
the ratio of specific heats γ = 1.4. Fluid viscosity µ and thermal conductivity k are
temperature-dependent and given by Sutherland’s law

µ= T3/2 1+ Sµ
T + Sµ

, k= T3/2 1+ Sk

T + Sk
, (2.5a,b)

where Sµ = 0.368 and Sk = 0.648 with reference temperature T̂0 = 300 K. The
arithmetic average temperature T̂0, cavity height Ĥ, free-fall velocity Û = (2εĝĤ)1/2,
reference time Ĥ/Û, average density ρ̂0, reference hydrodynamic pressure ρ̂0Û2

and reference thermodynamic pressure ρ̂0R̂T̂0 are used to non-dimensionalize the
equations, where ĝ is the gravitational acceleration, R̂ is the gas constant and ε is the
dimensionless temperature differential, which will be defined later. Fluid properties
evaluated at the reference temperature and thermodynamic pressure are also introduced
as reference quantities, including ĉp0, µ̂0 and k̂0.
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The three dimensionless parameters in the governing equations are the Rayleigh
number Ra, the Prandtl number Pr and the dimensionless temperature differential ε,
which are defined as

Ra=
1T̂ ĉp0ρ̂

2
0 ĝĤ3

T̂0µ̂0k̂0

, Pr=
ĉp0µ̂0

k̂0

, ε =
1T̂

2T̂0
. (2.6a−c)

Besides these, there is a geometric parameter, i.e. the aspect ratio A= L̂/Ĥ; the local
Prandtl number is not spatially constant and varies slightly with temperature around
the reference value 0.71 (Xia et al. 2016); and ε quantifies the intensity of NOB
effects, with ε 6 0.6 corresponding to 1T̂ 6 360 K.

The governing equations are supplemented by the following boundary conditions:

u=w=
∂T
∂x
= 0, at x=±A/2,

u=w= 0, T = 1∓ ε, at z=±1/2.

 (2.7)

Based on (2.1), (2.3) and (2.4) and the fact that the thermodynamic pressure p is
spatially constant, the time derivative of p and velocity divergence can be obtained
as

dp
dt
=

1
(1− Γ )V

1
√

RaPr

∫
V

∂

∂xj

(
k
∂T
∂xj

)
dV, (2.8)

∂uj
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1
p

[
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dp
dt
+
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√

RaPr

∂

∂xj

(
k
∂T
∂xj

)]
=

1
T

[
∂T
∂t
+ uj

∂T
∂xj
−

1
ρ

dp
dt

]
, (2.9)

where V is the cavity volume. Based on the equation of state (2.4) and global mass
conservation condition, p can be obtained as

p= V
(∫

V

dV
T

)−1

. (2.10)

In the limit ε → 0, the OB approximation can be recovered from the low-Mach-
number equations (Paolucci 1982). In this study, quantities (e.g. the critical Rayleigh
number for convection onset) within the OB approximation are estimated using the
low-Mach-number equations with ε = 10−5, unless otherwise stated. Under the OB
approximation, the RB system is equivariant under spatial reflections Rz and Rx about
the horizontal and vertical mid-planes. The actions of these spatial transformations on
the velocity field are given by

Rz[u,w](t, x, z)= [u,−w](t, x,−z),
Rx[u,w](t, x, z)= [−u,w](t,−x, z).

}
(2.11)

When NOB effects are considered, the Rz symmetry is broken and the system is
equivariant only under spatial transformation Rx. These symmetries play an important
role in the bifurcation processes of the system (Golubitsky, Stewart & Schaeffer 1988;
Crawford & Knobloch 1991; Hoyle 2006).
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FIGURE 2. (Colour online) (a) Temperature profiles of the conduction states for the OB
approximation and NOB case ε = 0.6. (b) Variations of µ and k with T .

Besides stability analysis, DNS is also performed. The governing equations are
solved by a finite difference method with a second-order fractional-step method for
time stepping and a second-order central difference scheme for spatial derivative
terms. A non-uniform staggered grid is used with grid points clustered near walls.
Our code was carefully validated and the DNS results are in good agreement with
previous results in the literature. For more details see Xia et al. (2016).

3. Linear stability analysis
3.1. The base flow: thermal conduction state

The motionless conduction state is always a solution of the system and is stable when
Ra is small enough. Once the top and bottom boundary conditions are given, the
distribution of temperature T (overline indicates quantities of the conduction state) can
be determined by numerically solving the nonlinear equation (Chenoweth & Paolucci
1985)

d
dz

(
k

dT
dz

)
= 0. (3.1)

Then other quantities of the conduction state (e.g. p, ρ and π ) can be obtained.
Figure 2 shows the temperature profiles of the conduction states for the OB
approximation and ε = 0.6. The variations of µ and k with T are also shown. Within
the OB approximation, the temperature varies linearly with z. However, when ε= 0.6,
the linear relationship is lost and the temperature gradient is larger (smaller) near the
cold (hot) horizontal plate. This is attributed to the fact that fluid conductivity k is a
monotonically increasing function of temperature as shown in figure 2(b).

3.2. Linear stability analysis and critical quantities

According to linear stability theory, the vector of dependent variables q=[u,w,T, π]T
can be decomposed into two parts: the base flow q and disturbance q′. Substituting this
decomposition into the fully nonlinear equations (2.2), (2.3) and (2.9), and neglecting
the nonlinear terms of q′, the following LSE is obtained, which governs the evolution
of infinitesimal disturbance:

C
∂q′

∂t
= Lq′. (3.2)
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FIGURE 3. (Colour online) Disturbance velocity (arrows) and temperature (colour maps)
distributions of critical eigenmodes for A= 1. (a) OB approximation, (b) NOB, ε = 0.6.

Linear operators C and L are given in appendix A. Considering a normal-mode
solution

q′(t, x, z)= q̃(x, z)eσ t, (3.3)

and substituting it into (3.2), we obtain the boundary value equation

σCq̃= Lq̃, (3.4)

which is supplemented with the homogeneous boundary conditions

ũ= w̃=
∂T̃
∂x
= 0, at x=±A/2,

ũ= w̃= T̃ = 0, at z=±1/2.

 (3.5)

Here σ denotes the growth rate of eigenmode q̃. The Chebyshev collocation method
is used to discretize the boundary value equation above and the resulting matrix
eigenvalue problem is solved using the QZ algorithm (Trefethen 2000). Grid
independence is verified for linear stability analysis and the leading eigenvalue is
computed with an accuracy of at least 10−7. For A = 1 and ε = 10−5 we obtain
the critical Rayleigh number Racr of convection onset to be 2585.0187, which is in
good agreement with the value 2585.0195 obtained by Mizushima (1995) based on
the OB equations. When NOB effects are strong, the computed leading disturbance
growth rate near criticality is also consistent with that obtained by DNS. Note that
the instability of convection onset is found to be always stationary.

When A = 1, the critical eigenmodes for the OB approximation (ε = 10−5) and
NOB case (ε = 0.6) are depicted in figure 3. Compared with the OB case, it is
clearly found that, under NOB conditions, the stagnation point of the dominant roll
deviates from the mid-plane z= 0 towards the cold plate, and the disturbance velocity
and temperature gradient near the cold plate are larger than those near the hot plate.
Variations of −|1σ |1/2 (for Ra = 2585.0187) and (1Racr)

1/2 with ε are shown in
figure 4, where 1σ = σ(ε) − σOB and 1Racr = Racr(ε) − Racr,OB (subscript OB
indicates quantities under the OB approximation). It is observed that both −|1σ |1/2
and (1Racr)

1/2 are proportional to ε when ε is small. In other words, σ and Racr
vary with ε, with leading-order corrections ∼ ε2. For large ε, deviations from this ε2
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FIGURE 4. (Colour online) Variations of (a) −|1σ |1/2 (for Ra = 2585.0187) and of
(b) (1Racr)

1/2 with ε for A = 1. Linear fits of small-ε data (red dashed lines) are also
depicted, indicating that −|1σ |1/2 and (1Racr)

1/2 are proportional to ε when ε is small.

scaling are visible. Based on numerical simulation of the low-Mach-number equations
in a cavity of aspect ratio 20, Paolucci & Chenoweth (1987) also observed the ε2

scaling of 1Racr and obtained the Racr–ε relation quantitatively.
This ε2 scaling originates from an intrinsic symmetry of the system. When ε

changes sign and Ra remains positive, the temperature boundary conditions of two
horizontal plates are interchanged and the direction of gravity is reversed (due to the
presence of ε in the buoyancy term). The resulting convection system is actually the
same. Thus, the eigenvalues of the linear stability analysis are irrelevant to the sign
of ε and q̃(−ε)= Rz[q̃(+ε)]. We assume that the NOB influences on σ and Racr can
be accounted for by the following expansions in powers of ε:

σ(ε)= σOB + εσ1 + ε
2σ2 + · · · ,

Racr(ε)= Racr,OB + εR1 + ε
2R2 + · · · .

}
(3.6)

Then the intrinsic ±ε symmetry implies σ2n+1=R2n+1= 0 for n= 0, 1, 2, . . . , and the
leading-order corrections of σ and Racr due to NOB effects are at the order of ε2.

3.3. Perturbation expansion of the LSE and influence of the aspect ratio
In order to quantitatively investigate flow instabilities of the conduction state with
weak NOB effects, a perturbation expansion of the LSE in ε is performed. An
analogous treatment of the LSE has been used in a variety of flow problems (Gao
& Lu 2006; Wang 2008). Since instability of convection onset is found to be always
stationary by linear stability analysis, it is appropriate to set the growth rate σ to 0
in (3.4). Then Racr can be obtained by calculating the new eigenvalue λ=

√
Racr/Pr

of the resulting LSE.
Here we only consider the non-degenerate case, where only one eigenmode loses

stability at criticality. Assume that the influences of weak NOB effects on λ can be
accounted for by the following expansion in powers of ε:

λ= λ0 + ελ1 + ε
2λ2 + · · · . (3.7)

Base flow q=[u,w,T, π ]T and associated boundary conditions, linear operators of the
LSE and eigenmode q̃=[ũ, w̃, T̃, π̃ ]T are also expanded in ε analogously. Substituting
these series expansions into the LSE and collecting terms of equal power of ε, a
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sequence of linear equations is obtained. The leading-order equation is of order ε−1

due to the presence of ε in the buoyancy term, and we obtain T̃0 = 0. At the order
of ε0, an eigenvalue problem is obtained:

λ0Bq̃0 =Aq̃0, (3.8)

where q̃0 = [ũ0, w̃0, T̃1, π̃0]
T, and linear operators A and B are given in appendix B,

and λ0=
√

Racr,OB/Pr and q̃0 are eigenpairs under the OB approximation. The smallest
λ0 is of interest and gives the critical Ra for convection onset. At the order of ε1, we
obtain an inhomogeneous equation

λ0Bq̃1 −Aq̃1 =−(λ1Bq̃0 +F1), (3.9)

where q̃1 = [ũ1, w̃1, T̃2, π̃1]
T and F1 is calculated from known quantities. Notice that

the linear operator λ0B−A is singular. In order to keep (3.9) solvable, the following
orthogonality condition should be satisfied:

λ1ψ̃
HBq̃0 + ψ̃

HF1 = 0, (3.10)

where (·)H denotes complex-conjugate transpose and ψ̃ is the critical adjoint
eigenmode obtained by solving the adjoint eigenvalue problem

λ0BHψ̃ =AHψ̃ . (3.11)

Normalization is performed so that ψ̃HBq̃0 = 1. When the compatibility condition
(3.10) is satisfied, q̃1 is defined up to an arbitrary component of q̃0. An additional
condition ψ̃HBq̃1 = 0 is introduced to uniquely determine q̃1, which now quantifies
the deviation of the eigenmode from that under the OB approximation. Then λ1 and
q̃1 can be calculated at once by solving the bordered linear system (Carini, Auteri &
Giannetti 2015) [

λ0B−A Bq̃0

ψ̃HB 0

](q̃1

λ1

)
=

(
−F1

0

)
. (3.12)

At the order of ε2, we obtain the equation

λ0Bq̃2 −Aq̃2 =−(λ2Bq̃0 +F2), (3.13)

where q̃2= [ũ2, w̃2, T̃3, π̃2]
T and F2 is obtained from known quantities. The solvability

condition of (3.13) yields

λ2ψ̃
HBq̃0 + ψ̃

HF2 = 0. (3.14)

Then λ2 and q̃2 are also calculated at once by solving the bordered linear system[
λ0B−A Bq̃0

ψ̃HB 0

](q̃2

λ2

)
=

(
−F2

0

)
. (3.15)

With homogeneous boundary conditions for q̃i, the equations above are solved
numerically using the Chebyshev collocation method for discretization, and the
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FIGURE 5. Variations of (a) λ0 and (b) λ2 with A. The black dashed line in (b)
corresponds to the λ2 value computed based on numerical results of Paolucci &
Chenoweth (1987) for A= 20.

eigenvalue problem at the order of ε0 is solved using the QZ algorithm (Trefethen
2000). The results show that generally |λ1| � |λ2| and |λ1| < 10−6 for various A,
implying that 1λ = λ(ε) − λ0 is proportional to ε2 at the leading order. Since
λ∼
√

Racr, Racr also varies with ε with a leading-order correction ∼ ε2, in qualitative
consistency with the results of direct linear stability analysis and the ±ε symmetry
of the system. We attribute the small non-zero value of λ1 to numerical errors.
The proportionality factor 2Prλ0λ2 between 1Racr and ε2 obtained by perturbation
expansion of the LSE agrees well with that evaluated by direct linear stability analysis.
The ±ε symmetry implies that λ2n+1 be equal to 0 for n= 0, 1, 2, . . . .

The variations of λ0 and λ2 with A are shown in figure 5. From figure 5(a) it is
observed that λ0 increases rapidly as A→ 0 and approaches

√
1708/Pr asymptotically

as A→∞, which is in agreement with previous results (Mizushima 1995). The value
1708 is the well-known critical Rayleigh number of an RB system of infinite extent
under the OB approximation. From figure 5(b) it is found that the influences of weak
NOB effects on stability of the conduction state are qualitatively different in wide and
narrow cavities. When A is large, we have λ2 > 0, indicating that Racr increases with
ε and flow stability is enhanced. When A is small enough, we have λ2 < 0, indicating
that the conduction state is destabilized by NOB effects. The critical aspect ratio at
which λ2 = 0 is approximately 0.83. By numerically solving the low-Mach-number
equations, Paolucci & Chenoweth (1987) found that Racr increases with ε as Racr =

Rac0(1+ aε2), with Rac0 = 1708.8 and a= 0.1832 in a cavity of aspect ratio 20. The
corresponding λ2 can be evaluated as a

√
Rac0/2

√
Pr= 4.49, which is consistent with

the trend of λ2 in the wide-cavity limit obtained by perturbation expansion of the LSE,
as shown in figure 5(b). We note that, while λ2 can be quantitatively dependent on
the numerical values Sµ and Sk for given A, the trends of variation of λ2 with A are
qualitatively consistent for general perfect gases. Thus it is expected that the results
obtained for air at reference temperature 300 K are generically valid for typical perfect
gases.

Distributions of temperature T̃i+1 and velocity (ũi, w̃i) of q̃i with i = 0, 1, 2 for
A=1 and 0.5 are depicted in figure 6. Eigenmodes q̃(ε=0.1) obtained by perturbation
expansion of the LSE are also shown. It is observed that, for both A= 1 and 0.5, q̃0
comprises one dominant roll and q̃1 comprises two vertically stacked rolls. However,
the velocity distributions of q̃2 are different for the two aspect ratios. For A = 0.5,
q̃2 consists of three well-developed vertically stacked rolls, while for A= 1, only two
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FIGURE 6. (Colour online) Velocity (arrows) and temperature (colour maps) distributions
of q̃0, q̃1, q̃2 and q̃(ε = 0.1) (from left to right) for (a) A= 1 and (b) A= 0.5.

rolls are present. This is attributed to the larger vertical extent in narrower cavities. As
the cavity is widened, the strength and vertical dimension of the middle roll of the
velocity field decrease gradually, while there is little change in the size of associated
temperature blocks. Thus mismatch of the velocity and temperature fields appears in
wide cavities, as shown in the third panel of figure 6(a). Despite the existence of
mismatch, the temperature and velocity fields are always consistent with each other in
terms of symmetries. For both aspect ratios A= 1 and 0.5, q̃(ε = 0.1) consists of one
dominant roll. The distinctions of NOB corrections of eigenmodes for the two aspect
ratios are expected to lead to different disturbance kinetic energy budget variations
as shown in the following section (§ 3.4) and result in qualitatively different NOB
influences of linear instabilities. When q̃1 of appropriate amplitude is superposed on
q̃0, temperature gradient and velocity are enlarged (reduced) near the cold (hot) plate,
and the stagnation point of the dominant roll deviates from the horizontal mid-plane
towards the cold plate, consistent with previous observation (see figure 3).

When ε = 0.1, the critical Rayleigh numbers Racr calculated by perturbation
expansion are 2589.5 and 11921 for A = 1 and 0.5, respectively. The most unstable
eigenmodes at these two parameter combinations (Racr, A) are obtained by direct
linear stability analysis. Then the temperature and velocity profiles along the
cross-section z= 0.25 are extracted and compared with those obtained by perturbation
expansion, as shown in figure 7. Good quantitative agreement is obtained.

The distributions of q̃0, q̃1 and q̃2 in figure 6 can be shown to be consistent with the
±ε symmetry of the system. It is observed that {ũi, w̃i, T̃i} can be classified into two
sets based on symmetry. Quantities in set Se = {ũ0, ũ2, w̃0, w̃2, T̃2} have even indices
and are invariant under RxRz transformation, while those in set So = {ũ1, w̃1, T̃1, T̃3}

have odd indices and are invariant under Rz transformation. We denote these
symmetries as RxRz[Se] = Se and Rz[So] = So. Note that Rx[Se] = Rz[Se] = −Se and
Rx[So] = −So. By perturbation expansion eigenmode q̃(ε) can be obtained by linear
combination of Se and So, which is denoted as q̃(ε) = f ([Se, So], ε) formally; f has
the properties f ([Se, So], −ε) = f ([Se, −So], ε) and R[ f ([Se, So], ε)] = f (R[Se, So], ε)
for transformation R ∈ {Rx, Rz, RxRz}. Then it can be shown that

Rz[q̃(ε)] = Rz[ f ([Se, So], ε)] = Rx[ f ([Se, So],−ε)] = Rx[q̃(−ε)]. (3.16)
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FIGURE 7. Profiles of ũ (black solid line), w̃ (grey solid line) and T̃ (black dashed line)
along the cross-section z = 0.25 of q̃(ε = 0.1) obtained by perturbation expansion for
(a) A=1 and (b) A=0.5. Results of direct linear stability analysis (circles) are also shown
for comparison.

Here q̃(−ε) is the eigenmode for the RB system with dimensionless temperature
differential −ε, so Rx[q̃(−ε)] is due to the Rx reflection symmetry, which is consistent
with the ±ε symmetry of the system.

3.4. Energy analysis
In order to gain detailed physical insights into the NOB influences on flow instability,
a budget analysis of disturbance kinetic energy near convection onset is performed,
and the contributions of different physical factors to disturbance growth rate are
quantitatively identified. The rate of change of disturbance kinetic energy is governed
by the Reynolds–Orr equation, which is obtained by multiplying the linear momentum
equation by u′ and integrating over the flow domain V (Ma, Henry & Hadid 2005;
Wang et al. 2012, 2014):

1
K

dK
dt
=−

1
K

∫
V

u′i
∂π ′

∂xi
dV︸ ︷︷ ︸

kc

+
1
K

√
Pr
Ra

∫
V

u′i
∂τ ′ij

∂xj
dV︸ ︷︷ ︸

kv

+
1
K

1
2ε

∫
V
ρ ′niu′i dV︸ ︷︷ ︸

kb

, (3.17)

where K = (1/2)
∫

Vρ0u′iu
′

i dV is the disturbance kinetic energy, and terms kc, kv and
kb correspond to the overall contributions of compressibility, viscosity and buoyancy,
respectively.

For i ∈ {c, v, b}, the variations of ki due to NOB effects are quantified by 1ki =

ki(ε)− ki,OB. We use ks = |1kc| + |1kv| + |1kb| to measure the overall sensitivity of
different actions to NOB effects. A budget analysis of disturbance kinetic energy near
criticality is performed for A = 0.6, 1, 2.5, and the variations of ks and 1ki with
ε are obtained, as depicted in figure 8. For each A, results at two Rayleigh numbers
with a difference of approximately 100 are shown. It is found that the variations of
results at the two different Rayleigh numbers are fairly small, suggesting that ks and
1ki as functions of ε and Ra depend weakly on Ra near criticality. Therefore, in the
following, the NOB influences on disturbance kinetic energy budget are investigated
without explicit consideration of the influence of Ra.

In figure 8, it is noteworthy that
√

ks and
√
|1ki| vary with ε linearly when ε

is small. In other words, ks and 1ki are proportional to ε2 for small ε, which can
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FIGURE 8. (Colour online) Plots of
√

ks,
√
|1kc|,

√
|1kv| and

√
|1kb| as functions of

ε for different (Ra, A) combinations: (a) (Ra, A) = (6950, 0.6) (lines) and (Ra, A) =
(7054, 0.6) (circles); (b) (Ra, A)= (2570, 1) (lines) and (Ra, A)= (2670, 1) (circles); and
(c) (Ra, A)= (1900, 2.5) (lines) and (Ra, A)= (2000, 2.5) (circles).

also be interpreted in terms of the ±ε symmetry of the system. This scaling is
approximately valid for a fairly large ε range, especially for A = 1 and 2.5. The
complex variation of

√
|1kc| in the case A = 1 is due to the fact that, as ε is

increased, kc first increases from 0 and then decreases and becomes negative for large
ε. This indicates that compressibility has both stabilizing and destabilizing effects,
depending on the intensity of NOB effects. It is found that kv is always negative,
indicating the stabilizing effect of viscosity, while kb is always positive, indicating
the destabilizing effect of buoyancy. Since ks and 1ki comply with the same scaling
with ε in a certain range of ε, 1ki/ks are basically ε-independent.

Figure 9 plots the variations of ks and 1ki/ks with A for ε = 0.1, 0.2, 0.3 and 0.4.
As we can see, the data of 1ki/ks at various ε are collapsed fairly well onto the same
curves. From figure 9(a) it is found that ks is basically independent on A for large
A. However, when A is small enough, ks grows rapidly as A is decreased, indicating
that the overall sensitivity of compressibility, viscosity and buoyancy actions to NOB
effects is larger in narrow cavities. From figure 9(b) it is observed that 1kc can be
positive or negative for different A. Since kc,OB = 0, kc can be positive or negative,
implying that compressibility may weaken or enhance flow stability for various A
under NOB conditions. From figure 9(c,d), it is observed that 1kv (1kb) is positive
(negative) for small A and becomes negative (positive) for large A. Considering that
kv < 0 and kb > 0, the variations of 1kv and 1kb with A indicate that viscosity
and buoyancy actions are weakened (enhanced) for small (large) A on account of
NOB effects. From figure 9(b–d), |1kv/ks| is observed to be larger than |1kc/ks| and
|1kb/ks| generally (except near the transition point from being positive to negative),
implying that, compared with compressibility and buoyancy, viscosity action is more
sensitive to NOB effects and the NOB influences on disturbance growth rate are
dominated by the variation of kv.

We note that ki are the integral contributions of corresponding actions. We can
further divide them into contributions originating from different components of ki and
different locations of the flow domain. It is found that the NOB corrections can be
stabilizing or destabilizing depending on the specific components and spatial locations,
indicating that the NOB corrections 1ki originate from the competition of various
components and spatial locations.
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FIGURE 9. (Colour online) Plots of (a) ks, (b) 1kc/ks, (c) 1kv/ks and (d) 1kb/ks as
functions of A for ε = 0.1, 0.2, 0.3 and 0.4.

4. Weakly nonlinear analysis
4.1. Basic formulations of weakly nonlinear analysis

In order to investigate the NOB influences on bifurcation characteristics of convection
onset, weakly nonlinear analysis is performed based on centre-manifold reduction.
Necessary formulations are described in this subsection. A more complete and
rigorous discussion can be found in Coullet & Spiegel (1983) and Carini et al.
(2015). In this study, Ra and A constitute the parameter space and ε is treated as an
external parameter. At certain parameter values (Racr, Acr), two eigenmodes can lose
stability simultaneously. Near these so-called codimension-two points, two reduced
control parameters are introduced:

ξ =
1
√

Racr
−

1
√

Ra
, ζ =

1
A
−

1
Acr
. (4.1a,b)

Here A is a geometric parameter appearing in the boundary conditions (2.7). It is
convenient to rescale the x-coordinate so that parameter A appears explicitly in the
governing equations. Decomposing the vector of dependent variables q= [u,w, T, π ]T
into base flow q and disturbance q′, the following nonlinear disturbance equation is
obtained from the fully nonlinear equations (2.2), (2.3) and (2.9):

Cw ∂q′

∂t
= Lwq′ +Nw(q′, ξ , ζ ), (4.2)

where linear operators Cw and Lw are the rescaled counterparts of C and L in (3.2)
with parameters (Ra,A)= (Racr,Acr). Nonlinear terms of q′ are collected in Nw; q′ can
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be expressed as a function of critical amplitudes a= (α, β) of two critical eigenmodes
and bifurcation parameters b= (ξ , ζ ) (Carini et al. 2015)

q′(t)= q′(a(t), b). (4.3)

The dynamics of a system restricted on the centre manifold is governed by the
reduced-order equation

ȧ= g(a(t), b). (4.4)

Based on centre-manifold reduction, we can expand q′(a(t), b) and g(a(t), b) as power
series of a and b as

q′(a(t), b)=
r∑

m=1

∑
|i|+|j|=m

q̃i,ja
i(t)bj,

g(a(t), b)=
r∑

m=1

∑
|i|+|j|=m

g̃i,ja
i(t)bj,


(4.5)

where, following the notations in Carini et al. (2015), i = (i1, i2) and j = ( j1, j2)
are multi-indices, |i| = i1 + i2, |j| = j1 + j2 and aibj

= αi1β i2ξ j1ζ j2 ; and r is the finite
truncation order.

Substituting expressions (4.5) into the nonlinear disturbance equation (4.2), terms
of the same order (m, k) are collected, leading to a sequence of linear equations,
the solutions of which give q̃i,j and g̃i,j. Thus, the low-dimensional amplitude
equation (4.4) is constructed. For the generic term (m, k), we obtain〈

Cw
r∑

m=1

∑
|i|+|j|=m

q̃i,j(ȧi)bj

〉
m,k

= Lwq̃m,k + 〈N
w(q′, b)〉m,k, (4.6)

where 〈f 〉m,k indicates the vector coefficient of ambk in power series expansion of f .
Note that approximate algebraic expressions for µ(T) and k(T) are employed, which
are derived by expanding Sutherland’s law (2.5a,b) in Taylor series about T up to
order r.

As in Carini et al. (2015), a two-dimensional multi-index 1l is introduced for
convenience whose lth entry is one and the other is set to zero. Let us consider the
order m= 1 first, where m= |m| + |k|. When (m, k)= (1l, 0) for l= 1, 2, assuming
g̃1l,0 = σl1l (Carini et al. 2015), the following generalized eigenvalue problem is
obtained (Nw does not contribute at this order):

σlCwq̃1l,0 = Lwq̃1l,0. (4.7)

We obtain σl=0 since flow instabilities of convection onset considered here are always
stationary. The q̃1l,0 are corresponding critical eigenmodes, which are also denoted by
φl in the following. Critical adjoint eigenmodes ψl are also needed and obtained by
solving the adjoint eigenvalue problem

σl(Cw)Hψl = (Lw)Hψl, (4.8)

with the normalization condition ψH
i Cwφj = δij.
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When (m, k)= (0, 1l), equation (4.6) reads

Lwq̃0,1l
=−Nw

0,1l
+CwΦg̃0,1l

, (4.9)

where Φ = [φ1,φ2]. Notice that the linear operator Lw is singular. The equation above
is solvable only when the right-hand side is orthogonal to ψ1 and ψ2. When this
compatibility condition is satisfied, q̃0,1l

are defined up to arbitrary components of
φ1 and φ2. With additional condition ψH

i Cwq̃0,1l
= 0 introduced for i = 1, 2, q̃0,1l

are
uniquely determined. Then q̃0,1l

and g̃0,1l
can be calculated at once by solving the

bordered linear system (Carini et al. 2015)[ Lw
−CwΦ

Ψ HCw 0

] (q̃0,1l

g̃0,1l

)
=

(
−Nw

0,1l

0

)
, (4.10)

where Ψ = [ψ1,ψ2]. Since the conduction state is independent of parameters ξ and ζ ,
Nw does not contribute at this order. Thus, we have g̃0,1l

= 0 and q̃0,1l
= 0 for l= 1, 2.

At the order m > 2, the involved linear equations are solved sequentially at
increasing order in the power of b. Generally for (m, k), the following linear equation
is obtained:

Lwq̃m,k −CwΦg̃m,k = h̃m,k, (4.11)

where h̃m,k is calculated from known quantities. Then q̃m,k and g̃m,k are also obtained
at once by solving the bordered linear system[ Lw

−CwΦ

Ψ HCw 0

] (q̃m,k

g̃m,k

)
=

(
h̃m,k

0

)
. (4.12)

4.2. Codimension-one case
Although the weakly nonlinear analysis is formulated above for the codimension-two
problem, with one of two amplitudes (say β) fixed at 0, equation (4.4) can also be
used to investigate codimension-one bifurcations. Also A is fixed in this case (ζ = 0).
Thus, the one-dimensional amplitude equation can be obtained. When truncated to the
third order it reads

α̇ = g1α + g2α
2
+ g3α

3, (4.13)

where

g1 = g1,0,0,0 + g1,0,1,0ξ + g1,0,2,0ξ
2,

g2 = g2,0,0,0 + g2,0,1,0ξ,

g3 = g3,0,0,0.

 (4.14)

In order to describe various bifurcation processes more faithfully, the amplitude
equation up to the seventh order is constructed in practice. To verify the accuracy
of weakly nonlinear analysis, the obtained results are compared with those of linear
stability analysis and DNS, and qualitative and quantitative agreement is obtained, as
shown below. The conduction state is always a solution of the system; correspondingly
there is no constant term on the right-hand side of (4.13). For (A, ε)= (1, 0.6), the
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FIGURE 10. Leading disturbance growth rate σ computed by weakly nonlinear analysis
(line) and linear stability analysis (circles) for (A, ε)= (1, 0.6).

variation of leading disturbance growth rate σ with Ra is obtained by the weakly
nonlinear analysis (coefficient g1) and compared with results of linear stability
analysis, as shown in figure 10. Quantitative agreement is obtained for the two
methodologies.

In this study the critical eigenmode is generally composed of a certain number of
rolls, which are stacked along the horizontal direction. Within the OB approximation,
due to symmetries (2.11), the amplitude equation (4.13) is always equivariant under
the transformation α ↔ −α, indicating g2 = 0. Considering NOB effects, when the
critical eigenmode comprises an odd number of rolls, the α ↔ −α symmetry is
reserved due to the Rx symmetry and we have g2= 0. Whereas when an even number
of rolls are present, the α↔−α symmetry is broken due to the breaking of the Rz
symmetry and generally g2 6= 0.

By DNS, bifurcation diagrams at typical parameters (A, ε) are obtained, which
are depicted in figure 11. Note that only stable solutions are captured by DNS.
The vertical velocity component of a monitoring point locating at the mid-plane
z = 0 and near the left sidewall is used to characterize various solutions. When
different solutions are conjugated with each other with respect to some symmetry,
only one of them is shown for simplicity. Discontinuous transitions captured by
numerical continuation are marked by solid arrows. We remark that generally very
long computation time is needed for numerical solutions to reach steady states near
transition points, and in this study accurate critical Ra for these transitions are not
pursued, which has no qualitative influence on the bifurcation pictures. Schematics of
bifurcation regimes based on weakly nonlinear analysis are also depicted in figure 11,
where qualitative variations of α with Ra are shown. It is observed that bifurcation
processes obtained by the two methodologies are qualitatively consistent with each
other.

For A . 1.5, the critical eigenmode comprises one dominant roll for various ε
and flows with clockwise and anticlockwise rolls are conjugated with each other.
In this case we have g2 = 0, indicating that the conduction state loses stability
through a perfect pitchfork bifurcation. It is noted that, due to numerical errors,
g2 calculated by weakly nonlinear analysis is not strictly zero. However, near the
critical point, g2 is negligible compared with other terms. Thus, the g2 term can be
discarded and normal form based on symmetry arguments is recovered, as discussed
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FIGURE 11. (Colour online) Bifurcation diagrams obtained by DNS (left column) and
weakly nonlinear analysis (right column) for codimension-one bifurcations at parameters
(a) (A, ε)= (1, 0.4), (b) (A, ε)= (1, 0.6), (c) (A, ε)= (1.5, 0.6) and (d) (A, ε)= (2, 0.2). In
the bifurcation diagrams in the left column, flow fields corresponding to the black circles
near them are shown. In the bifurcation diagrams in the right column, stable (unstable)
solutions are indicated by solid (dashed) lines. For clarification, one-roll and two-roll
solutions are indicated by green and red lines, respectively.
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FIGURE 12. (Colour online) Variations of Landau coefficient g3 with ε for various A.
Normalization is performed so that g3(ε = 0.1)=−1.

in Carini et al. (2015). Analogous symmetry reduction will be performed whenever
specific symmetry is present in amplitude equations. The nature of bifurcation due
to the unstable one-roll mode is reflected in the sign of Landau coefficient g3 in
expressions (4.14). The variations of g3 with ε for various A are illustrated in
figure 12. It is observed that, for small A (e.g. A= 0.2), g3 < 0 for ε6 0.6, indicating
that convection always appears through a supercritical pitchfork bifurcation. For
intermediate A (e.g. A = 0.5, 1), g3 < 0 for small ε and becomes positive for large
ε. Thus, when NOB effects are weak, the pitchfork bifurcation is supercritical, while
when NOB effects are strong enough, it becomes subcritical. Similar transition of
bifurcation nature due to NOB effects was also observed in a two-dimensional
periodic RB system (Fröhlich et al. 1992). For A= 1, bifurcation diagrams at ε = 0.4
and 0.6 (before and after the transition point) are shown in figure 11(a,b). For fairly
large A (e.g. A= 1.5), g3 < 0 for ε 6 0.6 and varies non-monotonically with ε. Thus,
convection onsets through a supercritical pitchfork bifurcation. However, for large ε
the supercritical convection state will disappear through a saddle-node bifurcation near
criticality and convection can occur at subcritical Ra, as shown in the bifurcation
diagrams for (A, ε) = (1.5, 0.6) in figure 11(c). Note that our weakly nonlinear
analysis does not capture faithfully the subcritical stable convection solution, which
is not depicted in the schematic bifurcation diagram in figure 11(c).

Here, we also consider a relatively larger aspect ratio case, i.e. A = 2. In this
case the critical eigenmode comprises two horizontally stacked rolls. Within the OB
approximation, amplitude equation (4.13) is equivariant under the transformation α↔
−α due to the Rz symmetry, and solutions with centre plumes flowing upwards and
downwards are conjugate with each other. Convection appears through a supercritical
pitchfork bifurcation. When NOB effects are taken into account, the Rz symmetry
is broken and generally g2 6= 0, as discussed previously. Thus, the bifurcation of
convection onset becomes transcritical, as shown in figure 11(d) for (A, ε)= (2, 0.2).
The two-roll convection solution bifurcating supercritically from the conduction state
is obtained by weakly nonlinear analysis for (A, ε,Ra)= (2, 0.6, 2300) (corresponding
Racr is 2210.0084), and velocity profiles along the mid-plane z= 0 are extracted and
compared with results of DNS, as shown in figure 13. Good quantitative agreement
is obtained.
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FIGURE 13. (Colour online) Profiles along the mid-plane z= 0 of the horizontal velocity
component u (black line) and vertical component w (grey line) of the flow field (inset)
constructed by weakly nonlinear analysis for (A, ε, Ra)= (2, 0.6, 2300). Results of DNS
(circles) are also shown for comparison.

ε Racr Acr

OB 2415.9363 1.6286
0.2 2436.2203 1.6221
0.4 2505.4831 1.6027
0.6 2655.3616 1.5711

TABLE 1. Parameters of codimension-two points for various ε where one- and two-roll
modes lose stability simultaneously.

4.3. Codimension-two case
At certain parameters (Racr, Acr), eigenmodes comprising n and n + 1 rolls can
lose stability simultaneously. In this case, two-dimensional amplitude equations are
obtained by centre-manifold reduction. The interaction of one- and two-roll modes
(n = 1) is investigated as an example to illustrate the possible NOB influences on
codimension-two bifurcations. Parameters of codimension-two points for various ε are
listed in table 1. It is shown that Acr decreases and Racr increases as NOB effects
are increased.

Within the OB approximation, due to symmetries (2.11), two-dimensional amplitude
equations should be equivariant under transformations

Rx : (α, β)↔ (−α, β),

Rz : (α, β)↔ (−α,−β),

}
(4.15)

and the general form truncated to the third order reads

α̇ = g10α + g30α
3
+ g12αβ

2,

β̇ = h01β + h21α
2β + h03β

3,

}
(4.16)

where α and β are the critical amplitudes of one- and two-roll modes, respectively.
When NOB effects are taken into account, the Rz symmetry is broken and the
amplitude equations are equivariant only under the transformation (α, β)↔ (−α, β).
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FIGURE 14. Growth rates of one-roll (solid line) and two-roll (dashed line) modes
calculated by the weakly nonlinear analysis for (A, ε)= (1.6, 0.6). The results of the linear
stability analysis (circles) are also shown for comparison.

The corresponding amplitude equations truncated to the third order read

α̇ = g10α + g11αβ + g30α
3
+ g12αβ

2,

β̇ = h01β + h20α
2
+ h02β

2
+ h21α

2β + h03β
3,

}
(4.17)

where

g10 = g1,0,0,0 + g1,0,1,0ξ + g1,0,0,1ζ + g1,0,2,0ξ
2
+ g1,0,1,1ξζ + g1,0,0,2ζ

2,

g11 = g1,1,0,0 + g1,1,1,0ξ + g1,1,0,1ζ ,

g30 = g3,0,0,0, g12 = g1,2,0,0,

h01 = h0,1,0,0 + h0,1,1,0ξ + h0,1,0,1ζ + h0,1,2,0ξ
2
+ h0,1,1,1ξζ + h0,1,0,2ζ

2,

h20 = h2,0,0,0 + h2,0,1,0ξ + h2,0,0,1ζ ,

h02 = h0,2,0,0 + h0,2,1,0ξ + h0,2,0,1ζ ,

h21 = h2,1,0,0, h03 = h0,3,0,0.


(4.18)

In practice, amplitude equations up to the seventh order are constructed. Except for the
trivial solution (0, 0), equations (4.16) permit pure-mode solutions (α, 0), (0, β) and
mixed-mode solution (α, β) with α 6= 0 and β 6= 0. Compared with equations (4.16),
the amplitude equations (4.17) possess new interaction terms and permit solutions in
the form of (0, 0), (0, β) and (α, β). However, the pure-mode solution (α, 0) is
not permissible due to the presence of the α2 term, implying that near criticality the
two-roll mode can be excited by the one-roll mode. The growth rates of the one-
and two-roll modes for (A, ε)= (1.6, 0.6) calculated by the weakly nonlinear analysis
(coefficients g10 and h01 truncated to the first order) and linear stability analysis are
shown in figure 14. The results of the two methodologies are in good agreement.

Under the OB approximation, bifurcation diagrams near the corresponding
codimension-two point are obtained by DNS of the OB equations, which are depicted
in figure 15. As mentioned above, when different solutions are conjugated with each
other with respect to some symmetry, only one of them is shown for simplicity. The
amplitude equations within the OB approximation can be obtained by performing
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FIGURE 15. (Colour online) Bifurcation diagrams obtained by DNS (left column) and
weakly nonlinear analysis (right column) within the OB approximation at (a) A =
1.62 < Acr,OB and (b) A = 1.64 > Acr,OB. In the bifurcation diagrams (right column),
stable (unstable) solutions are indicated by solid (dashed) lines. For clarification, one-roll,
two-roll and mixed-mode solutions are indicated by green, red and blue lines, respectively.

symmetry reduction of those at a very small ε (ε = 10−5 is used). Schematics
of bifurcation regimes based on these amplitude equations are also displayed in
figure 15, where the variations of α and β with Ra are depicted. Owing to symmetries
(4.15), only solutions with α> 0 and β > 0 are shown for simplicity. For clarification,
one-roll, two-roll and mixed-mode solutions are indicated by lines of different colours.
Specifically, green lines represent the one-roll solutions and lie in the β = 0 plane,
red lines represent the two-roll solutions and lie in the α = 0 plane, while blue lines
represent the mixed-mode solutions and lie out of the α = 0 and β = 0 planes. It is
observed that the results obtained by the two methodologies are consistent.

When A = 1.62 < Acr,OB = 1.6286, as shown in figure 15(a), the one-roll mode
loses stability first through a supercritical pitchfork bifurcation and gives rise to a one-
roll solution. Subsequently through another supercritical pitchfork bifurcation the two-
roll mode becomes unstable and an unstable two-roll solution appears, which gains
stability at higher Ra and gives rise to an unstable mixed-mode solution. When A=
1.64> Acr,OB, as shown in figure 15(b), the bifurcation regime is qualitatively similar
to that in figure 15(a) when α and β are switched. Mode interactions in a similar
convection configuration under the OB approximation have been studied systematically
using weakly nonlinear analysis (Metzener 1986).

On account of NOB effects, the (α, β)↔ (−α, −β) symmetry of the amplitude
equations (4.17) is broken and the interaction of one- and two-roll modes is expected
to be qualitatively different from the OB case. Here we choose the ε = 0.2 case as
an example to illustrate this point. The bifurcation diagrams obtained by both DNS
and weakly nonlinear analysis are shown in figure 16. In the bifurcation diagrams
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FIGURE 16. (Colour online) Bifurcation diagrams obtained by DNS (left column) and
weakly nonlinear analysis (right column) for ε= 0.2 and (a) A= 1.58<Acr, (b) A= 1.61<
Acr, (c) A= 1.625> Acr and (d) A= 1.63> Acr. In the bifurcation diagrams in the right
column, stable (unstable) solutions are indicated by solid (dashed) lines. For clarification,
two-roll and mixed-mode solutions are indicated by red and blue lines, respectively.

obtained by the weakly nonlinear analysis, considering the (α,β)↔ (−α,β) symmetry,
only solutions with α > 0 are shown for simplicity. The bifurcation diagrams for
A<Acr=1.6221 are shown in figure 16(a,b). When A=1.58, as shown in figure 16(a),
the one-roll mode loses stability first through a supercritical pitchfork bifurcation and
simultaneously a stable two-roll mode is excited due to NOB effects. Thus, a stable
mixed-mode solution appears. Subsequently unstable two-roll solutions appear through
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FIGURE 17. (Colour online) Profiles along the mid-plane z= 0 of the horizontal velocity
component u (black line) and vertical component w (grey line) of the flow field (inset)
constructed by weakly nonlinear analysis for (A, ε, Ra) = (1.625, 0.2, 2490). Results of
DNS (circles) are also shown for comparison.

a transcritical bifurcation and gain stability after pitchfork bifurcations. When A=1.61,
relatively closer to Acr, a qualitative change of the bifurcation regime is observed as
shown in figure 16(b). The stable mixed-mode solution disappears through a saddle-
node bifurcation near criticality, and the corresponding solution branch is connected
with a two-roll branch through a mixed-mode branch. Thus, near convection onset
a stable mixed-mode solution of a finite Ra range appears and a hysteresis loop is
present.

Bifurcation diagrams for A > Acr are shown in figure 16(c,d). When A = 1.625,
as shown in figure 16(c), the conduction state first gives rise to two-roll solutions
through a transcritical bifurcation. The subcritical one disappears after a saddle-node
bifurcation as Ra is decreased. The supercritical one loses and gains stability as Ra is
increased and gives rise to a stable mixed-mode solution in a finite range of Ra. As
the one-roll mode becomes unstable, an unstable mixed-mode solution appears. The
flow field of the stable mixed-mode solution at Ra = 2490 is obtained by weakly
nonlinear analysis, and velocity profiles along the mid-plane z= 0 are extracted and
compared with results of DNS, as shown in figure 17. Good quantitative agreement
is obtained. When A= 1.63, away from Acr, the bifurcation regime becomes simpler
as shown in figure 16(d). Near convection onset the supercritical two-roll solution
remains stable and no stable mixed-mode solution is found.

Overall, near codimension-one criticality, depending on the symmetry of the
critical eigenmode and the intensity of NOB effects, the bifurcation process can
be qualitatively different from the OB case. In the codimension-two case, the
interaction of two critical eigenmodes is also qualitatively influenced by NOB effects.
In both cases, bifurcation characteristics depend sensitively on the confinement of
sidewalls. Near criticality, both stable and unstable solutions can be captured by
weakly nonlinear analysis, which is useful for organizing and understanding the DNS
results.

5. Summary and discussion
In this study, the NOB influences on flow instabilities and bifurcation processes of

RB convection in two-dimensional rigid cavities of finite aspect ratios are examined.
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The working fluid is air. Subject to a large temperature difference, the variations of
fluid properties and flow compressibility are significant, and the low-Mach-number
equations with acoustic waves filtered are employed to deal with such NOB effects.

Flow instabilities and bifurcation processes are found to be qualitatively and
quantitatively influenced by NOB effects. Firstly, through linear stability analysis,
the loss of the reflection symmetry of the critical eigenmode about the horizontal
mid-plane is observed under NOB conditions. It is also found that both the disturbance
growth rate σ and the critical Rayleigh number Racr vary with ε with leading-order
corrections ∼ ε2 generally, due to the intrinsic symmetry of the system.

Secondly, by performing a perturbation expansion of the LSE in ε, the influences of
weak NOB effects on critical quantities are identified. It is interesting that NOB effects
possess the dual nature of stabilizing and destabilizing, which relies on aspect ratio.
In relatively wide cavities, NOB effects are stabilizing, while they are destabilizing in
narrow cavity systems. A detailed budget analysis of disturbance kinetic energy shows
that contributions of compressibility, viscosity and buoyancy vary with ε with leading-
order corrections ∼ ε2. Considering NOB effects, viscosity and buoyancy actions are
weakened in narrow cavities, whilst being enhanced in wide cavities. Compressibility
has both destabilizing and stabilizing effects under NOB conditions. Compared with
compressibility and buoyancy, viscosity action is generally more sensitive to NOB
effects and plays a dominate role in the NOB influences on disturbance growth rate.

Finally, amplitude equations are derived based on centre-manifold reduction, and
then the bifurcation nature of convection onset is studied for both codimension-one
and -two cases. For the codimension-one case, bifurcation characteristics are sensitive
to the symmetry of the critical eigenmode and the intensity of NOB effects. When
A . 1.5, the one-roll mode becomes unstable first. In this aspect ratio range, when
A is relatively small, convection always appears through a supercritical pitchfork
bifurcation for ε 6 0.6. For intermediate A, the pitchfork bifurcation of convection
onset is supercritical when NOB effects are weak and becomes subcritical for strong
enough NOB effects. For fairly large A, although the conduction state loses stability
through a supercritical pitchfork bifurcation, convection can occur at subcritical Ra
for large ε. In the case of A = 2, the two-roll mode firstly becomes unstable and
the bifurcation of convection onset becomes transcritical under NOB conditions.
Moreover, for the codimension-two case, NOB effects lead to new interaction terms
in the normal form of amplitude equations. The bifurcation regimes induced by the
interaction of one- and two-roll modes are qualitatively influenced by NOB effects.
In both codimension-one and -two cases, bifurcation processes are sensitive to the
confinement of sidewalls.

Compared with previous studies of NOB influences on RB instabilities, which
mainly focused on spatial extended systems, it is shown in this work that flows in
cavities of different aspect ratios can respond differently to the NOB effects, in both
the linear and nonlinear regimes. The combination of symmetry breaking due to NOB
effects and selection of flow structures by geometry confinement can have non-trivial
influences on flow evolutions.

While a two-dimensional configuration is adopted in this study, it is expected that
some of the results obtained can also be relevant in three-dimensional convection. In
three-dimensional configuration, though the two-dimensional convection structures of
fluid flows assumed here cannot be realized strictly, the convection rolls can line up
parallel to a pair of sidewalls and possess nearly two-dimensional structures near the
threshold of convection onset. Besides, when the cavity dimension along the axis of
convection rolls is not too small, it is expected that the centre of flow will not be
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influenced greatly by the front walls and the results of two-dimensional convection can
be applied. When fully three-dimensional flow structures are developed, the results of
the current work cannot be applied directly and a detailed investigation is needed to
explore the three-dimensional flow dynamics. However, it is expected that phenomena
similar to those we observed, e.g. the qualitative change of bifurcation nature with
aspect ratio under NOB conditions, can also appear in fully three-dimensional
problems.

In this study, we focused on the NOB effects of air due to a large temperature
difference in two-dimensional cavities of finite aspect ratios. Linear and weakly
nonlinear stability analyses are in principle important methods to obtain details that
are useful for organizing and understanding the DNS results near instability thresholds.
It is of interest to extend the present methods to study the NOB effects of different
media (e.g. water, glycerol) and flow configurations of different symmetries (e.g.
cylinder, annulus).
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Appendix A

In equation (3.2) the linear operators C and L are

C=


I 0 0 0
0 I 0 0
0 0 I − Γ SpL 0
0 0 I − SpL 0

 , L=

L11 L12 0 L14
L21 L22 L23 L24
0 L32 L33 0

L41 L42 0 0

 , (A 1a,b)

and the components of L read as follows:

L11 =

√
Pr
Ra

S
(

4
3

M11 +M22

)
, L12 =

√
Pr
Ra

S
(
−

2
3

M12 +M21

)
,

L14 =−S
∂

∂x
, L21 =

√
Pr
Ra

S
(
−

2
3

M21 +M12

)
,

L22 =

√
Pr
Ra

S
(

M11 +
4
3

M22

)
, L23 =−

dπ
dz

SL +
1
2ε

SL,

L24 =−S
∂

∂z
, L32 =−

dT
dz
,

L33 =
1

√
PrRa

S
[
∂

∂x

(
k
∂

∂x

)
+
∂

∂z

(
dT
dz

kL

)
+
∂

∂z

(
k
∂

∂z

)]
,

L41 = T
∂

∂x
, L42 = T

∂

∂z
−

dT
dz
.



(A 2)
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In the expressions above, I is the identity operator, S = 1/ρ, Mij = ∂(µ(∂/∂xj))/∂xi,
kL = dk/dT|T and

pL(T̃)= p
∫

V

ρ

T
T̃ dV,

SL(T̃)= S

(
T̃
T
−

∫
V

ρ

T
T̃ dV

)
.

 (A 3)

Appendix B
Operators A and B in (3.8) are

A=

A11 A12 0 0
A21 A22 0 0
0 0 A33 0
0 0 0 0

 , B=

 0 0 0 B14
0 0 B23 B24
0 B32 0 0

B41 B42 0 0

 , (B 1a,b)

where

A11 =
4
3 M11 +M22, A12 =−

2
3 M12 +M21, A21 =M12 −

2
3 M21,

A22 =M11 +
4
3

M22, A33 =
1

Pr

(
∂2

∂x2
+
∂2

∂z2

)
, B14 =

∂

∂x
,

B23 =−
1
2

gL, B24 =
∂

∂z
, B32 =−2, B41 =

∂

∂x
, B42 =

∂

∂z
,


(B 2)

with gL(T̃)= T̃ − (1/V)
∫

V T̃ dV .
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